
Exploring ReasonML
 and functional programming

Dr. Axel Rauschmayer

2

Exploring ReasonML
Dr. Axel Rauschmayer

2020

Copyright © 2020 by Dr. Axel Rauschmayer
Image on cover by courtesy of the National Gallery of Art
All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher except
for the use of brief quotations in a book review or scholarly journal.
reasonmlhub.com

https://www.nga.gov/collection/art-object-page.153950.html

Contents

I Background 7
1 About this book 9

1.1 Questions and answers about this book 9
1.2 Warning: This book is outdated . 9
1.3 About the cover . 9

2 What is ReasonML? 11
2.1 What is ReasonML? . 11
2.2 The benefits of OCaml . 12
2.3 Improving OCaml . 12
2.4 Conclusion . 13

3 Getting started with ReasonML 15
3.1 Installation . 15
3.2 Quickly trying out ReasonML . 15
3.3 Template projects . 16
3.4 Important tip: converting OCaml to ReasonML 16

4 What is planned for ReasonML? 17

5 FAQ: ReasonML 19
5.1 Where is module Str in BuckleScript? . 19

II Core language 21
6 A first look at ReasonML’s syntax 23

6.1 Most things are expressions . 24
6.2 Semicolons matter . 24
6.3 Everything is camel-cased in ReasonML 25
6.4 Special prefixes and suffixes for variable names 25

7 Basic values and types 27
7.1 Interactions in rtop . 27
7.2 ReasonML is statically typed – what does that mean? 27
7.3 Comments . 28
7.4 Booleans . 29

3

4 CONTENTS

7.5 Numbers . 29
7.6 Strings . 29
7.7 Characters . 30
7.8 The unit type . 30
7.9 Converting between basic types . 31
7.10 More operators . 31

8 let bindings and scopes 33
8.1 Normal let bindings . 33
8.2 Redefining variables . 33
8.3 Type annotations . 34
8.4 Creating new scopes via scope blocks . 34

9 Pattern matching: destructuring, switch, if expressions 35
9.1 Digression: tuples . 35
9.2 Pattern matching . 35
9.3 Pattern matching via let (destructuring) 38
9.4 switch . 38
9.5 if expressions . 41
9.6 The ternary operator (_?_:_) . 42

10 Functions 45
10.1 Defining functions . 45
10.2 Single parameters without parentheses 46
10.3 Recursive bindings via let rec . 46
10.4 Terminology: arity . 47
10.5 The types of functions . 47
10.6 There are no functions without parameters 49
10.7 Destructuring function parameters . 49
10.8 Labeled parameters . 50
10.9 Optional parameters . 51
10.10Partial application . 54
10.11The reverse-application operator (|>) . 57
10.12Tips for designing function signatures . 58
10.13Single-argument match functions . 58
10.14(Advanced) . 59
10.15Operators . 59
10.16Polymorphic functions . 61
10.17ReasonML does not support variadic functions 63

11 Basic modules 65
11.1 Installing the demo repository . 65
11.2 Your first ReasonML program . 65
11.3 Two simple modules . 66
11.4 Controlling how values are exported from modules 68
11.5 Importing values from modules . 70
11.6 Namespacing modules . 73
11.7 Exploring the standard library . 74
11.8 Installing libraries . 75

CONTENTS 5

12 Variant types 77
12.1 Variants as sets of symbols (enums) . 77
12.2 Variants as data structures . 79
12.3 Self-recursive data structures via variants 80
12.4 Mutually recursive data structures via variants 81
12.5 Parameterized variants . 81
12.6 Useful standard variants . 83

13 Where are the remaining chapters? 85

6 CONTENTS

Part I

Background

7

Chapter 1

About this book

1.1 Questions and answers about this book
• What am I going to learn?

– This book teaches the programming language ReasonML by Facebook.
– It is also an introduction to functional programming. Especially people fa-
miliar with C-style languages (Java, JavaScript, C#, etc.) will profit from Rea-
sonML’s familiar syntax.

• Is there any required knowledge?
– You should know how to program, e.g. in a mainstream language such as
Java, JavaScript, C#, Python, C/C++, PHP, Ruby, Go, etc.

• How can I get started a quickly as possible?
– Read the whole book in order, skip chapters and sections marked as “ad-
vanced”.

• Does this book cover all of ReasonML?
– This book explains the language and functional programming. It also gives
tips for using the standard library.

– It does not cover ReasonReact and JavaScript interop. Chapter “What to read
next?” points to information on those topics.

1.2 Warning: This book is outdated
Sadly, after the initial version, I couldn’t afford to keep this book updated. It describes
ReasonML as of 2018.

1.3 About the cover
Image by courtesy of the National Gallery of Art:

• “A Dromedary” (1551–1572) by Georg Mattheus. Woodcut on laid paper.
• URL: https://www.nga.gov/collection/art-object-page.153950.html

9

https://www.nga.gov/collection/art-object-page.153950.html

10 1 About this book

Chapter 2

What is ReasonML?

This chapter gives a brief high-level explanation of Facebook’s new programming lan-
guage, ReasonML.

2.1 What is ReasonML?
ReasonML is a new object-functional programming language created at Facebook. In
essence, it is a new C-like syntax for the programming language OCaml. The new syntax
is intended to make interoperation with JavaScript and adoption by JavaScript program-
mers easier. Additionally, it removes idiosyncrasies of OCaml’s syntax. ReasonML also
supports JSX (the syntax forHTML templates inside JavaScript used by Facebook’s React
framework). Due to ReasonML being based on OCaml, many people use the two names
interchangeably. The following diagram shows how ReasonML fits into the OCaml
ecosystem.

OCaml syntax
(.ml, .mli)

ReasonML syntax
(.re, .rei)

OCaml AST

Bytecode Native code JavaScript

BuckleScriptocamloptocamlc

Figure 2.1: This is how ReasonML fits into the OCaml ecosystem.

At the moment, ReasonML’s default compilation target is JavaScript (browsers and
Node.js).
This is what ReasonML code looks like:

11

https://reasonml.github.io

12 2 What is ReasonML?

type color = Red | Green | Blue;

let stringOfColor = (c) =>
switch (c) {
| Red => "Red"
| Green => "Green"
| Blue => "Blue"
};

Several things are notable:

• Many elements of the syntax are borrowed from JavaScript. For example:
– The name switch (OCaml: match)
– The syntax ‘(x) => ···‘ for functions
– Semicolons

• Other elements are typical for a functional programming language. For example:
– color is a variant type
– switch performs pattern matching

• No type annotations were needed (e.g. the parameter c of stringOfColor does not
have one).

2.2 The benefits of OCaml
ReasonML’s foundation, OCaml, brings the following benefits:

• It is an established language (created in 1996) that has proven itself in many
projects. Facebook itself is using it in several projects (e.g. Flow).

• Its core is a functional programming language with a full-featured type system.
But it also supports object-orientation and mutable state.

• It can be compiled to either bytecode, fast native code or JavaScript.

• Compilation to JavaScript is fast. Quoting the blog post “Messenger.comNow 50%
Converted to Reason”:

Full rebuild of the Reason part of the codebase is ~2s (a few hundreds
of files), incremental build (the norm) is <100ms on average. The Buck-
leScript author estimates that the build system should scale to a few
hundred thousands files in the current condition.

2.3 Improving OCaml
The ReasonML team also aims to improve the OCaml ecosystem:

• Better tooling (testing, documentation, editor support, etc.).
• Better interoperation with JavaScript. The ReasonML-to-JavaScript compiler is al-
ready very fast and produces relatively readable code.

• Better standard library (there is a fair amount of competition in this space in
OCaml, without a clear winner).

https://reasonml.github.io/community/blog/#messengercom-now-50-converted-to-reason
https://reasonml.github.io/community/blog/#messengercom-now-50-converted-to-reason

2.4 Conclusion 13

2.4 Conclusion
ReasonML feels much like what you’d get if you cleaned up JavaScript and turned it
into a statically typed functional programming language. I’m ambivalent about JSX in
ReasonML – it has pros and cons. I’m glad that ReasonML doesn’t reinvent the wheel
and is strictly based on the established OCaml.
OCaml’s pragmatism means that you don’t get some of the more fancy functional fea-
tures (that, e.g., Haskell has), but it also leads to fast compilation, efficient code and
decent error messages.

14 2 What is ReasonML?

Chapter 3

Getting started with ReasonML

In this chapter, I give tips for getting started with the programming language ReasonML.

3.1 Installation
There are two things to install:

• bs-platform: Installs BuckleScript and enables you to compile ReasonML to
JavaScript. The installation is described in the ReasonML docs.

• reason-cli: Needed to support ReasonML in editors, but also contains various
tools, including the interactive ReasonML command line rtop. The installation is
described in the ReasonML docs. Editor support is provided by two parts:

– On one hand, a so-called language server provides services for working with
ReasonML code.

– On the other hand, editor plugins and similar extension mechanisms com-
municate with the server to provide the actual support.

3.2 Quickly trying out ReasonML
3.2.1 The ReasonML online playground
The ReasonMLwebsite contains an online playground that is very useful for seeing how
the language works and what the corresponding JavaScript and OCaml code is. It can
also convert from OCaml to ReasonML (more on that later).

The playground’s examples give you a first taste of the language.

3.2.2 rtop, the interactive ReasonML command line
rtop is an interactive command line for ReasonML and started via rtop from a shell.
Once it runs, interacting with it looks as follows.

15

https://reasonml.github.io
https://reasonml.github.io/docs/en/quickstart-javascript.html
https://reasonml.github.io/docs/en/global-installation.html
https://github.com/Microsoft/language-server-protocol
https://reasonml.github.io/en/try.html

16 3 Getting started with ReasonML

Reason # 3 + 4;
- : int = 7

You can already see that everything has a static type in ReasonML. Don’t forget the semi-
colon at the end – it triggers evaluation! You can quit rtop via Ctrl-D or via #quit;

3.3 Template projects
There are two template projects to get you started. They are created via bsb (which is
part of bs-platform):

• Node.js code:
bsb -init my-first-app -theme basic-reason

• Web development (React):
bsb -init my-react-app -theme react

3.4 Important tip: converting OCaml to ReasonML
Given that most material relevant for ReasonML uses OCaml’s syntax, it’s very useful to
be able to convert from OCaml’s syntax to ReasonML’s. There are two ways of doing so:

• The online playground “Try Reason”.
• The tool refmt (“ReasonML format”) that is part of reason-cli. Get documenta-
tion via refmt --help

https://reasonml.github.io/docs/en/quickstart-javascript.html
https://reasonml.github.io/reason-react/docs/en/installation.html
https://reasonml.github.io/en/try.html

Chapter 4

What is planned for ReasonML?

This chapter takes a brief look of a few key pieces of ReasonML that are still beingworked
on:

• Better support for writing asynchronous code that is compatible with JavaScript
Promises.

– One option is to provide special syntax (see issue on GitHub).
– Another option is to add support to OCaml’s concurrency library Lwt (it’s
one of the branches).

• Better support for polymorphism. At the moment, different types mean different
function or operator names for ReasonML (for example, there is + for ints and +.
for floats). Haskell has type classes to solve this problem. A similar approach is
being worked on for OCaml (and therefore ReasonML): modular implicits.

• A better standard library. Many things are being explored in this area (see reposi-
tory reasonml-community/belt). OCaml has a fair amount of fragmentation here,
so standardization will be welcome.

• Better support for Unicode. At the moment, OCaml has no support for Unicode
whatsoever and OCaml characters are 8 bit in size. You can get some Unicode
support via BuckleScript’s custom string literals (which compiles to JavaScript
strings):

Js.log({js|äöü|js});

In the future, ReasonMLmay addmore support for OCaml. They could, e.g., treat
strings as UTF-8 with tool functions for accessing grapheme clusters and code
points. Compilation to JavaScript will present challenges (e.g. accessing charac-
ters/units), because JavaScript is basically UTF-16.

• Long(er) term, ReasonML also has a compelling story for multicore code, via
OCaml’s algebraic effects.

For more information on what’s planned for ReasonML, consult its Frequently Asked
Questions.

17

https://reasonml.github.io
https://github.com/BuckleScript/bucklescript/issues/1326
https://github.com/ocsigen/lwt
http://ocamllabs.io/doc/implicits.html
https://github.com/reasonml-community/belt
http://ocamllabs.io/doc/effects.html
https://reasonml.github.io/docs/en/faq.html
https://reasonml.github.io/docs/en/faq.html

18 4 What is planned for ReasonML?

I’m excited about what’s in store. Better async support is especially important to me, as
it will make Node.js development much more pleasant. Is there anything that you’d like
to have that’s not on this list?

Chapter 5

FAQ: ReasonML

5.1 Where is module Str in BuckleScript?
When you compile to JavaScript, you can’t use module Str, whose functionality is too
dependent on native strings. Instead, you have to use JavaScript-specific modules:

• Strings: module Js.String
• Regular expressions: module Js.Re

19

https://reasonml.github.io/api/Str.html
https://bucklescript.github.io/bucklescript/api/Js.String.html
https://bucklescript.github.io/bucklescript/api/Js.Re.html

20 5 FAQ: ReasonML

Part II

Core language

21

Chapter 6

A first look at ReasonML’s syntax

In this chapter, I want to give you a first impression of what ReasonML code looks like.
Therefore: Don’t try to understand (yet) – proper explanations will be provided step by
step in the following chapters.

This is ReasonML code:

/* A comment (no single-line comments, yet) */
/* You can /* nest */ comments */

/* Variable binding */
let myInt = 123;

/* Functions */
let id = x => x;
let add = (x, y) => x + y;

/* Defining a variant type */
type color = Red | Green | Blue;

/* A function that switches over a variant type */
let stringOfColor = (c: color) =>

switch (c) {
| Red => "Red"
| Green => "Green"
| Blue => "Blue"
};

/* Calling stringOfColor() */
stringOfColor(Red); /* "Red" */

Again: There is no need to understand what I’ve just shown you. But if you want to dig
deeper right now, you can:

23

24 6 A first look at ReasonML’s syntax

• Pattern matching and switch
• Functions
• Variant types

6.1 Most things are expressions
For example, you can use if-then-else almost anywhere:

let myBool = true;
id(if (myBool) "yes" else "no");

And you can use blocks almost anywhere, too:

let abcabc = {
let abc = "abc";
abc ++ abc; /* "abcabc" */

};

In fact, the following two expressions are equivalent:

if (myBool) "yes" else "no";
if (myBool) {

"yes";
} else {

"no";
};

6.2 Semicolons matter
You may have noticed that there are many semicolons in the code in this chapter. Most
of these are mandatory. Extra semicolons are allowed and ignored. Especially the inter-
active command line rtop will only evaluate expressions terminated with semicolons.

At first, it is a bit strange to even see semicolons after code blocks, but it makes sense,
given that a code block is also an expression. With that knowledge, take another look at
the two if expressions:

if (myBool) "yes" else "no";
if (myBool) {

"yes";
} else {

"no";
};

The semicolon at the end of the first line looks logical. But then the semicolon at the very
end is logical, too, because we have only replaced the expression "no" with a block.

6.3 Everything is camel-cased in ReasonML 25

6.3 Everything is camel-cased in ReasonML
ReasonML is based on OCaml, which uses snake-casing for lowercase names (create_-
resource) and camel-casing for uppercase names (StringUtilities). That’s why you’ll
occasionally see snake-cased names.
But all new ReasonML code is camel-cased (StringUtilities, createResource).

6.4 Special prefixes and suffixes for variable names
A prefixed underscore means: don’t warn me about this variable not being used.

let f = (x, _y) => x;
/* No warning about _y */

Suffixed apostrophes are legal (in math, x'means a modified version of x):
let x = 23;
let x' = x + 1;

Prefixed apostrophes are reserved for type variables (think generic types in C-style lan-
guages):

let len = (arr: array('a)) => Array.length(arr);

Type variables are explained in the chapter on variant types. They are similar to generic
types in C-style languages.

26 6 A first look at ReasonML’s syntax

Chapter 7

Basic values and types

In this chapter, we’ll look at ReasonML’s support for booleans, integers, floats, strings,
characters and the unit type. We’ll also see a few operators in action.

To explore, we’ll use the interactive ReasonML command line rtop, which is part of the
package reason-cli (the docs explain how to install it).

7.1 Interactions in rtop

Interactions in rtop look as follows.

!true;
- : bool = false

Two observations:

• You must end the expression !true; with a semicolon in order for it to be evalu-
ated.

• rtop always prints out the types of the results it computes. That is especially help-
ful later on, with more complicated types, e.g. the types of functions.

7.2 ReasonML is statically typed – what does that mean?
Values in ReasonML are statically typed. What does static typingmean?

On one hand, we have the term type. In this context, type means “set of values”. For
example bool is the name of the type of all boolean values: the (mathematical) set {false,
true}.

On the other hand, we make the following distinction in the context of the life cycle of
code:

• Static: at compile time, without running the code.
• Dynamic: at runtime, while the code is running.

27

https://reasonml.github.io/docs/en/global-installation.html

28 7 Basic values and types

Therefore static typingmeans: ReasonML knows the types of values at compile time. And
types are also known while editing code, which supports intelligent editing features.

7.2.1 Get used to working with types
We have already encountered one benefit of static typing: editing support. It also helps
with detecting some kinds of errors. And it often helps with documenting how code
works (in a manner that is automatically checked for consistency).
In order to reap these benefits, you should get used to working with types. You get help
in two ways:

• ReasonML often infers types (writes them for you). That is, a passive knowledge
of types gets you surprisingly far.

• ReasonML gives descriptive errormessageswhen something goeswrong thatmay
even include tips for fixing the problem. That is, you can use trial and error to learn
types.

7.2.2 No ad hoc polymorphism (yet)
Ad hoc polymorphismmay sound brainy, but it has a simple definition and visible practical
consequences for ReasonML. So bear with me.
ReasonML does not currently support ad hoc polymorphism where the same operation
is implemented differently depending on the types of the parameters. Haskell, another
functional programming language supports ad hoc polymorphism via type classes. Rea-
sonML may eventually support it via the similar modular implicits.
ReasonML not supporting ad hoc polymorphism means that most operators such as +
(int addition), +. (float addition) and ++ (string concatenation) only support a single type.
Therefore, it is your responsibility to convert operands to proper types. On the plus side,
ReasonML will warn you at compile time if you forget to do so. That’s a benefit of static
typing.

7.3 Comments
Before we get into values and types, let’s learn comments.
ReasonML only has one way of writing comments:

/* This is a comment */

Conveniently, it is possible to nest this kind of comment (languages with C-style syntax
are often not able to do that):

/* Outer /* inner comment */ comment */

Nesting is useful for commenting out pieces of code:
/*
foo(); /* foo */
bar(); /* bar */
*/

7.4 Booleans 29

7.4 Booleans
Let’s type in a few boolean expressions:

true;
- : bool = true
false;
- : bool = false
!true;
- : bool = false
true || false;
- : bool = true
true && false;
- : bool = false

7.5 Numbers
These are integer expressions:

2 + 1;
- : int = 3
7 - 3;
- : int = 4
2 * 3;
- : int = 6
5 / 3;
- : int = 1

Floating-point expressions look as follows:

2.0 +. 1.0;
- : float = 3.
2. +. 1.;
- : float = 3.
2.25 +. 1.25;
- : float = 3.5

7. -. 3.;
- : float = 4.
2. *. 3.;
- : float = 6.
5. /. 3.;
- : float = 1.66666666666666674

7.6 Strings
Normal string literals are delimited by double quotes:

30 7 Basic values and types

"abc";
- : string = "abc"
String.length("ü");
- : int = 2

"abc" ++ "def";
- : string = "abcdef"
"There are " ++ string_of_int(11 + 5) ++ " books";
- : string = "There are 16 books"

{| Multi-line
string literal
\ does not escape
|};
- : string = " Multi-line\nstring literal\n\\ does not escape\n"

ReasonML strings are encoded as UTF-8 and not compatible with JavaScript’s UTF-16
strings. ReasonML’s support forUnicode is alsoworse than JavaScript’s – already limited
– one. As a short-term workaround, you can use BuckleScript’s JavaScript strings in
ReasonML:

Js.log("äöü"); /* garbage */
Js.log({js|äöü|js}); /* äöü */

These strings are produced via multi-line string literals annotated with js, which are
only treated specially by BuckleScript. In native ReasonML, you get normal strings.

7.7 Characters
Characters are delimited by single quotes. Only the first 7 bits of Unicode are supported
(no umlauts etc.):

'x';
- : char = 'x'
String.get("abc", 1);
- : char = 'b'
"abc".[1];
- : char = 'b'

"x".[0] is syntactic sugar for String.get("x", 0).

7.8 The unit type
Sometimes, you need a value denoting “nothing”. ReasonML has the special value ()
for this purpose. () has its own type, unit and is the only element of that type:

();
- : unit = ()

In contrast to null in C-style languages, () is not an element of any other type.

7.9 Converting between basic types 31

Among other things, the type unit is used for functionswith side effects that don’t return
anything. For example:

print_string;
- : (string) => unit = <fun>

The function print_string takes a string as an argument and prints that string. It has
no real result.

7.9 Converting between basic types
ReasonML’s standard library has functions for converting between the basic types:

string_of_int(123);
- : string = "123"
string_of_bool(true);
- : string = "true"

All of the conversion functions are named as follows.
«outputType»_of_«inputType»

7.10 More operators
7.10.1 Comparison operators
The following are comparison operators. They are part of the few operators that work
with several types (they are polymorphic).

3.0 < 4.0;
- : bool = true
3 < 4;
- : bool = true
3 <= 4;
- : bool = true

You cannot, however, mix operand types:
3.0 < 4;
Error: Expression has type int but expected type float

7.10.2 Equality operators
ReasonML has two equality operators.
Double equals (equality by value) compares values and does so even for reference types
such as lists.

[1,2,3] == [1,2,3];
- : bool = true

In contrast, triple equals (equality by reference) compares references:

32 7 Basic values and types

[1,2,3] === [1,2,3];
- : bool = false

== is the preferred equality operator (unless you really want to compare references).

Chapter 8

let bindings and scopes

In this chapter, we look at how to introduce new variables and scopes in ReasonML.

8.1 Normal let bindings
Variables are defined as follows:

let x = 123;
let x: int = 123;
x;
- : int = 123

Each binding (variable-value pair) that is created in this manner is immutable – you cannot
assign a different value to the variable. The norm is for the value to also be immutable,
but it doesn’t have to be.
Given that the binding is immutable, it is logical that you have to immediately initialize
the variable. You can’t leave it uninitialized.

8.2 Redefining variables
ReasonML does not prevent you from redefining variables:

let x = 1;
let x: int = 1;
x;
- : int = 1
let x = 2;
let x: int = 2;
x;
- : int = 2

This is not in conflict with the immutability of bindings: It works more like shadowing
in nested scopes than like changing the value of a variable.

33

34 8 let bindings and scopes

Being able to redefine variables is especially useful in interactive command lines.

8.3 Type annotations
You can also annotate the variable with a type:

let y: string = "abc";
let y: string = "abc";

Declaring types is occasionally necessary with more complicated types, but redundant
with simple types.

8.4 Creating new scopes via scope blocks
The scope of a variable is the syntactic construct in which it exists. Blocks enable you
introduce new scopes. They start and end with curly braces ({}):

let x = "hello";
print_string(x); /* hello */
{ /* A */

let x = "tmp";
print_string(x); /* tmp */

}; /* B */
print_string(x); /* hello */

The block starts in line A and ends in line B.
The interior of a block has the same structure as the top level of a file: it is a sequence of
expressions that are separated by semicolons.
Why is there a semicolon after the closing curly brace in line B? A block is just another
expression. Its value is the value of the last expression inside it. That means you can put
code blocks wherever you can put expressions:

let x = { print_string("hi"); 123 }; /* hi */
print_int(x); /* 123 */

Another example:
print_string({

let s = "ma";
s ++ s;

}); /* mama */

This continues a common theme in ReasonML: most things are expressions.

Chapter 9

Pattern matching: destructuring,
switch, if expressions

In this chapter, we look at three features that are all related to pattern matching: destruc-
turing, switch, and if expressions.

9.1 Digression: tuples
To illustrate patterns and pattern matching, we’ll use tuples. Tuples are basically records
whose parts are identified by position (and not by name). The parts of a tuple are called
components.
Let’s create a tuple in rtop:

(true, "abc");
- : (bool, string) = (true, "abc")

The first component of this tuple is the boolean true, the second component is the string
"abc". Accordingly, the tuple’s type is (bool, string).
Let’s create one more tuple:

(1.8, 5, ('a', 'b'));
- : (float, int, (char, char)) = (1.8, 5, ('a', 'b'))

9.2 Pattern matching
Before we can examine destructuring, switch and if, we need to learn their foundation:
pattern matching.
Patterns are a programming mechanism that helps with processing data. They serve two
purposes:

• Check what structure data has.

35

36 9 Pattern matching: destructuring, switch, if expressions

• Extract parts of data.
This is done by matching patterns against data. Syntactically, patterns work as follows:

• ReasonML has syntax for creating data. For example: tuples are created by sepa-
rating data with commas and putting the result in parentheses.

• ReasonML has syntax for processing data. The syntax of patterns mirrors the syn-
tax for creating data.

Let’s start with simple patterns that support tuples. They have the following syntax:
• A variable name is a pattern.

– Examples: x, y, foo
• A literal is a pattern.

– Examples: 123, "abc", true
• A tuple of patterns is a pattern.

– Examples: (8,x), (3.2,"abc",true), (1, (9, foo))

The same variable name cannot be used in two different locations. That is, the following
pattern is illegal: (x, x)

9.2.1 Equality checks
The simplest patterns don’t have any variables. Matching such patterns is basically the
same as an equality check. Let’s look at a few examples:

Pattern Data Matches?
3 3 yes
1 3 no
(true, 12, 'p') (true, 12, 'p') yes
(false, 12, 'p') (true, 12, 'p') no

So far, we have used the pattern to ensure that the data has the expected structure. As a
next step, we introduce variable names. Those make the structural checks more flexible
and let us extract data.

9.2.2 Variable names in patterns
A variable name matches any data at its position and leads to the creation of a variable
that is bound to that data.

Pattern Data Matches? Variable bindings
x 3 yes x = 3
(x, y) (1, 4) yes x = 1, y = 4
(1, y) (1, 4) yes y = 4
(2, y) (1, 4) no

The special variable name _ does not create variable bindings and can be used multiple

9.2 Pattern matching 37

times:

Pattern Data Matches? Variable bindings
(x, _) (1, 4) yes x = 1
(1, _) (1, 4) yes
(_, _) (1, 4) yes

9.2.3 Alternatives in patterns
Let’s examine another pattern feature: Two or more subpatterns separated by vertical
bars form an alternative. Such a pattern matches if one of the subpatterns matches. If a
variable name exists in one subpattern, it must exit in all subpatterns.
Examples:

Pattern Data Matches? Variable bindings
1❘2❘3 1 yes
1❘2❘3 2 yes
1❘2❘3 3 yes
1❘2❘3 4 no
(1❘2❘3, 4) (1, 4) yes
(1❘2❘3, 4) (2, 4) yes
(1❘2❘3, 4) (3, 4) yes
(x, 0) ❘ (0, x) (1, 0) yes x = 1

9.2.4 The as operator: bind and match at the same time
Until now, you had to decide whether you wanted to bind a piece of data to a variable
or to match it via a subpattern. The as operator lets you do both: it’s left-hand side is a
subpattern to match, its right-hand side is the name of a variable that the current data
will be bound to.

Pattern Data Matches? Variable bindings
7 as x 7 yes x = 7
(8, x) as y (8, 5) yes x = 5, y = (8, 5)
((1,x) as y, 3) ((1,2), 3)) yes x = 2, y = (1, 2)

9.2.5 There are many more ways of creating patterns

ReasonML supports more complex data types than just tuples. For example: lists and
records. Many of those data types are also supported via patternmatching. More on that
in later chapters.

38 9 Pattern matching: destructuring, switch, if expressions

9.3 Pattern matching via let (destructuring)
You can do pattern matching via let. As an example, let’s start by creating a tuple:

let tuple = (7, 4);
let tuple: (int, int) = (7, 4);

We can use pattern matching to create the variables x and y and bind them to 7 and 4,
respectively:

let (x, y) = tuple;
let x: int = 7;
let y: int = 4;

The variable name _ also works and does not create variables:
let (_, y) = tuple;
let y: int = 4;
let (_, _) = tuple;

If a pattern doesn’t match, you get an exception:
let (1, x) = (5, 5);
Warning: this pattern-matching is not exhaustive.
Exception: Match_failure.

We get two kinds of feedback from ReasonML:
• At compile time: A warning that there are (int, int) tuples that the pattern
doesn’t cover. We’ll look at what that means when we learn switch expressions.

• At runtime: An exception that matching failed.
Single-branch pattern matching via let is called destructuring. Destructuring can also be
used with function parameters (as we’ll see in the chapter on functions).

9.4 switch

letmatched a single pattern against data. With a switch expression, we can trymultiple
patterns. The first match determines the result of the expression. That looks as follows:

switch «value» {
| «pattern1» => «result1»
| «pattern2» => «result2»
···
}

switch goes through the branches sequentially: the first pattern thatmatches value leads
to the associated expression becoming the result of the switch expression. Let’s look at
an example where pattern matching is simple:

let value = 1;
let result = switch value {
| 1 => "one"
| 2 => "two"

9.4 switch 39

};
/* result == "one" */

If the switch value is more than a single entity (variable name, qualified variable name,
literal, etc.), it needs to be in parentheses:

let result = switch (1 + 1) {
| 1 => "one"
| 2 => "two"
};
/* result == "two" */

9.4.1 Warnings about exhaustiveness
When you compile the previous example or enter it in rtop, you get the following
compile-time warning:

Warning: this pattern-matching is not exhaustive.

That means: The operand 1 has the type int and the branches do not cover all elements
of that type. This warning is very useful, because it tells us that there are cases that we
may have missed. That is, we are warned about potential trouble ahead. If there is no
warning, switch will always succeed.
If you don’t fix this issue, ReasonML throws a runtime exception when an operand
doesn’t have a matching branch:

let result = switch 3 {
| 1 => "one"
| 2 => "two"
};
/* Exception: Match_failure */

One way to make this warning go away is to handle all elements of a type. I’ll briefly
sketch how to do that for recursively defined types. These are defined via:

• One or more (non-recursive) base cases.
• One or more recursive cases.

For example, for natural numbers, the base case is zero, the recursive case is one plus
a natural number. You can cover natural numbers exhaustively with switch via two
branches, one for each case.
For now, it’s enough to know that, whenever you can, you should do exhaustive cov-
erage. Then the compiler warns you if you miss a case, preventing a whole category of
errors.
If exhaustive coverage is not an option, you can introduce a catch-all branch. The next
section shows how to do that.

9.4.2 Variables as patterns
The warning about exhaustiveness goes away if you add a branch whose pattern is a
variable:

40 9 Pattern matching: destructuring, switch, if expressions

let result = switch 3 {
| 1 => "one"
| 2 => "two"
| x => "unknown: " ++ string_of_int(x)
};
/* result == "unknown: 3" */

We have created the new variable x by matching it against the switch value. That new
variable can be used in the expression of the branch.
This kind of branch is called “catch-all”: it comes last and is evaluated if all other
branches fail. It always succeeds and matches everything. In C-style languages,
catch-all branches are called default.
If you just want to match everything and don’t care what is matched, you can use an
underscore:

let result = switch 3 {
| 1 => "one"
| 2 => "two"
| _ => "unknown"
};
/* result == "unknown" */

9.4.3 Patterns for tuples
Let’s implement logical And (&&) via a switch expression:

let tuple = (true, true);

let result = switch tuple {
| (false, false) => false
| (false, true) => false
| (true, false) => false
| (true, true) => true
};
/* result == true */

This code can be simplified by using an underscore and a variable:
let result = switch tuple {
| (false, _) => false
| (true, x) => x
};
/* result == true */

9.4.4 The as operator
The as operator also works in switch patterns:

let tuple = (8, (5, 9));
let result = switch tuple {

9.5 if expressions 41

| (0, _) => (0, (0, 0))
| (_, (x, _) as t) => (x, t)
};
/* result == (5, (5, 9)) */

9.4.5 Alternatives in patterns
Using alternatives in subpatterns looks as follows.

switch someTuple {
| (0, 1 | 2 | 3) => "first branch"
| _ => "second branch"
};

Alternatives can also be used at the top level:
switch "Monday" {
| "Monday"
| "Tuesday"
| "Wednesday"
| "Thursday"
| "Friday" => "weekday"
| "Saturday"
| "Sunday" => "weekend"
| day => "Illegal value: " ++ day
};
/* Result: "weekday" */

9.4.6 Guards for branches
guards (conditions) for branches are a switch-specific feature: they come after patterns
and are preceded by the keyword when. Let’s look at an example:

let tuple = (3, 4);
let max = switch tuple {
| (x, y) when x > y => x
| (_, y) => y
};
/* max == 4 */

The first branch is only evaluated if the guard x > y is true.

9.5 if expressions
ReasonML’s if expressions look as follows (else can be omitted):

if («bool») «thenExpr» else «elseExpr»;

For example:
let bool = true;
let bool: bool = true;

42 9 Pattern matching: destructuring, switch, if expressions

let boolStr = if (bool) "true" else "false";
let boolStr: string = "true";

Given that scope blocks are also expressions, the following two if expressions are equiv-
alent:

if (bool) "true" else "false"
if (bool) {"true"} else {"false"}

In fact, refmt pretty-prints the former expression as the latter.
The then expression and the else expression must have the same type.

Reason # if (true) 123 else "abc";
Error: This expression has type string
but an expression was expected of type int

9.5.1 Omitting the else branch
You can omit the else branch – the following two expressions are equivalent.

if (b) expr else ()
if (b) expr

Given that both branchesmust have the same type, exprmust have the type unit (whose
only element is ()).
For example, print_string() evaluates to () and the following code works:

if (true) print_string("hello\n");
hello
- : unit = ()

In contrast, this doesn’t work:
if (true) "abc";
Error: This expression has type string
but an expression was expected of type unit

9.6 The ternary operator (_?_:_)
ReasonML also gives you the ternary operator as an alternative to if expressions. The
following two expressions are equivalent.

if (b) expr1 else expr2
b ? expr1 : expr2

The following two expressions are equivalent, too. refmt even pretty-prints the former
as the latter.

switch (b) {
| true => expr1
| false => expr2
};

9.6 The ternary operator (_?_:_) 43

b ? expr1 : expr2;

I don’t find the ternary operator operator very useful in ReasonML: its purpose in lan-
guages with C syntax is to have an expression version of the if statement. But if is
already an expression in ReasonML.

44 9 Pattern matching: destructuring, switch, if expressions

Chapter 10

Functions

This chapter explores how functions work in ReasonML.

10.1 Defining functions
An anonymous (nameless) function looks as follows:

(x) => x + 1;

This function has a single parameter, x, and the body x + 1.
You can give that function a name by binding it to a variable:

let plus1 = (x) => x + 1;

This is how you call plus1:
plus1(5);
- : int = 6

10.1.1 Functions as parameters of other functions (high-order func-
tions)

Functions can also be parameters of other functions. To demonstrate this feature, we
briefly use lists, which are explained in their own chapter. Lists are, roughly, singly linked
lists and similar to immutable arrays.
The list function List.map(func, list) takes list, applies func to each of its elements
and returns the results in a new list. For example:

List.map((x) => x + 1, [12, 5, 8, 4]);
- : list(int) = [13, 6, 9, 5]

Functions that have functions as parameters or results are called higher-order functions.
Functions that don’t are called first-order functions. List.map() is a higher-order function.
plus1() is a first-order function.

45

46 10 Functions

10.1.2 Blocks as function bodies
A function’s body is an expression. Given that scope blocks are expressions, the follow-
ing two definitions for plus1 are equivalent.

let plus1 = (x) => x + 1;

let plus1 = (x) => {
x + 1

};

10.2 Single parameters without parentheses
If a function has a single parameter and that parameter is defined via an identifier, you
can omit the parentheses:

let plus1 = x => x + 1;

10.3 Recursive bindings via let rec

Normally, you can only refer to let-bound values that already exist. That means that
you can’t define mutually recursive and self-recursive functions.

10.3.1 Defining mutually recursive functions
Let’s examine mutually recursive functions first. The following two functions even and
odd are mutually recursive (this is an example, not how you’d actually implement these
functions). You must use the special let rec to define them:

let rec even = (x) =>
if (x <= 0) {

true;
} else {

odd(x - 1);
}

and odd = (x) =>
if (x <= 0) {

false;
} else {

even(x - 1);
};

Notice how and connects multiple let rec entries that all know each other. There is no
semicolon before the and. The semicolon at the end indicates that let rec is finished.
Let’s use these functions:

even(11);
- : bool = false
even(2);

10.4 Terminology: arity 47

- : bool = true
odd(11);
- : bool = true
odd(2);
- : bool = false

10.3.2 Defining self-recursive functions
You also need let rec for functions that call themselves recursively, because when the
recursive call is made, the binding does not exist, yet. For example:

let rec factorial = (x) =>
if (x <= 2) {

x
} else {

x * factorial(x - 1)
};

factorial(3); /* 6 */
factorial(4); /* 24 */

10.4 Terminology: arity
The arity of a function is how many (positional) parameters it has. The arity of facto-
rial() is 1. The following adjectives describe functions with arities from 0 to 2:

• A nullary function is a function with arity 0.
• A unary function is a function with arity 1.
• A binary function is a function with arity 2.
• A ternary function is a function with arity 3.

Beyond arity 3, we talk about 4-ary functions, 5-ary functions etc. Functions whose arity
can vary are called variadic functions. These are also called varargs in some programming
languages.

10.5 The types of functions
Functions are the first time that we get in contact with complex types: types built by
combining other types. Let’s use rtop to determine the types of a two functions.

10.5.1 Types of first-order functions
First, a function add():

let add = (x, y) => x + y;
let add: (int, int) => int = <fun>;

Therefore, the type of add is:
(int, int) => int

48 10 Functions

The arrow indicates that add is a function. Its parameters are two ints. Its result is a single
int.
The notation (int, int) => int is also called the (type) signature of add. It describes the
types of its inputs and its outputs.

10.5.2 Types of higher-order functions
Second, a higher-order function callFunc():

let callFunc = (f) => f(1) + f(2);
let callFunc: ((int) => int) => int = <fun>;

You can see that the parameter of callFunc is itself a function and has the type (int) =>
int.
This is how callFunc() is used:

callFunc(x => x);
- : int = 3
callFunc(x => 2 * x);
- : int = 6

10.5.3 Type annotations and type inference
Type annotations are optional in ReasonML, but they improve the accuracy of type check-
ing. The most extreme is to annotate everything:

let add = (x: int, y: int): int => x + y;

We have provided type annotations for both parameters x and y and for the result of the
function (the last : int before the arrow).
You can omit the annotation for the return type and ReasonML will infer it (deduce it
from the type of the parameters):

let add = (x: int, y: int) => x + y;
let add: (int, int) => int = <fun>;

However, type inference is more sophisticated than that. It doesn’t only work top-down,
it can also infer the types of the parameters from the int-only plus operator (+):

let add = (x, y) => x + y;
let add: (int, int) => int = <fun>;

If you want, you can also annotate only some of the parameters:
let add = (x, y: int) => x + y;

10.5.4 Type annotations: best practice
The coding style I prefer for functions is to annotate all parameters, but to let ReasonML
infer the return type. Apart from improving type checking, annotations for parameters
are also good documentation.

10.6 There are no functions without parameters 49

10.6 There are no functions without parameters
ReasonML doesn’t have nullary functions, but you can use it without ever noticing that.
Recall that () is roughly similar to null in many C-style languages. It is the only element
of type unit. When calling functions, omitting parameters is the same as passing the unit
value as a single parameter. That is, the following two expressions are equivalent.

func()
func(())

The following example demonstrates this phenomenon: If you call a unary function
without parameters, rtop underlines () and complains about that expression having
the wrong type. It does not complain about not enough parameters being provided (it
doesn’t partially apply either – details later).

let id = (x: int) => x;
let id: (int) => int = <fun>;
id();
Error: This expression has type unit but
an expression was expected of type int

If you define a function that has no parameters, ReasonML adds a parameter for you,
whose type is unit:

let f = () => 123;
let f: (unit) => int = <fun>;

10.6.1 Why no nullary functions?
Why doesn’t ReasonML have nullary functions? That is due to ReasonML always per-
forming partial application (explained in detail later): If you don’t provide all of a func-
tion’s parameters, you get a new function from the remaining parameters to the result.
As a consequence, if you could actually provide no parameters at all, then func()would
be the same as func and neither would actually call func.

10.7 Destructuring function parameters
Destructuring can be used wherever variables are bound to values. That is, it also works
in parameter definitions. Let’s look at a function that adds the components of a tuple:

let addComponents = ((x, y)) => x + y;
let tuple = (3, 4);
addComponents(tuple); /* 7 */

The double parentheses around x, y indicate that addComponents is a function with a
single parameter, a tuple whose components are x and y. It is not a function with the two
parameters x and y. Its type is:

addComponents: ((int, int)) => int

When it comes to type annotations, you can either annotate the components:

50 10 Functions

let addComponents = ((x: int, y: int)) => x + y;
let addComponents: ((int, int)) => int = <fun>;

Or you can annotate the whole parameter:

let addComponents = ((x, y): (int, int)) => x + y;
let addComponents: ((int, int)) => int = <fun>;

10.8 Labeled parameters
So far, we have only used positional parameters: the position of an actual parameter at the
call site determines what formal parameter it is bound to.

But ReasonML also supports labeled parameters. Here, labels are used to associate actual
parameters with formal parameters.

As an example, let’s examine a version of add that uses labeled parameters:

let add = (~x, ~y) => x + y;
add(~x=7, ~y=9); /* 16 */

In this function definition, we used the same name for the label ~x and the parameter x.
You can also use separate names, e.g. ~x for the label and op1 for the parameter:

/* Inferred types */
let add = (~x as op1, ~y as op2) =>

op1 + op2;

/* Specified types */
let add = (~x as op1: int, ~y as op2: int) =>

op1 + op2;

At call sites, you can abbreviate ~x=x as just ~x:

let x = 7;
let y = 9;
add(~x, ~y);

One nice feature of labels is that you can mention labeled parameters in any order:

add(~x=3, ~y=4);
- : int = 7
add(~y=4, ~x=3);
- : int = 7

10.8.1 Compatibility of function types with labeled parameters
There is one unfortunate caveat to being able tomention labeled parameters in any order:
function types are only compatible if labels are mentioned in the same order.

Consider the following three functions.

10.9 Optional parameters 51

let add = (~x, ~y) => x + y;
let addxy = (add: ((~x: int, ~y: int) => int)) => add(5, 2);
let addyx = (add: ((~y: int, ~x: int) => int)) => add(5, 2);

addxy works as expected with add:

addxy(add);
- : int = 7

However, with addyx, we get an error, because the labels are in the wrong order:

addyx(add);
Error: This expression has type
(~x: int, ~y: int) => int
but an expression was expected of type
(~y: int, ~x: int) => int

10.9 Optional parameters
In ReasonML, only labeled parameters can be optional. In the following code, both x and
y are optional.

let add = (~x=?, ~y=?, ()) =>
switch (x, y) {
| (Some(x'), Some(y')) => x' + y'
| (Some(x'), None) => x'
| (None, Some(y')) => y'
| (None, None) => 0
};

Let’s examine what the relatively complicated code does.

Why the () as the last parameter? That is explained in the next section.

What does the switch expression do? If you declare a parameter as optional, it always
has the type option(t), where t is whatever type the actual values have. option is a
variant (which is explained in a separate chapter). For now, I’ll give a brief preview. The
definition of option is:

type option('a) = None | Some('a);

It is used as follows:

• Omit ~x and x will be bound to None.
• Provide the value 123 for ~x and x will be bound to Some(123).

In other words, optionwraps values and the switch expression in the example unwraps
them.

52 10 Functions

10.9.1 With optional parameters, you need at least one positional pa-
rameter

Why does add have a parameter of type unit (an empty parameter, if you will) at the
end?

let add = (~x=?, ~y=?, ()) =>
···

The reason has to do with partial application and is explained in more detail later. In a
nutshell, two things are in conflict here:

• With partial application, if you omit parameters, you create a function that lets you
fill in those remaining parameters.

• With optional parameters, if you omit parameters, they should be bound to their
defaults.

To resolve this conflict, ReasonML fills in all defaults for missing optional parameters
when it encounters the first positional parameter. Before it encounters a positional pa-
rameter, it still waits for the missing optional parameters. That is, you need a positional
parameter to trigger the call and since add() doesn’t have one, we added an empty one.

The advantage of this slightly weird approach is that you get the best of both worlds:
you get partial application and optional parameters.

10.9.2 Type annotations for optional parameters
When you annotate optional parameters, they must all have option(···) types:

let add = (~x: option(int)=?, ~y: option(int)=?, ()) =>
···

The type signature of add is:

(~x: int=?, ~y: int=?, unit) => int

It’s unfortunate that the definition differs from the type signature in this case. But it
is the same as for parameters with default values (which are explained next) where it
makes sense. The idea is to hide the implementation detail of how optional parameters
are handled.

10.9.3 Parameter default values
Handling missing parameters can be cumbersome:

let add = (~x=?, ~y=?, ()) =>
switch (x, y) {
| (Some(x'), Some(y')) => x' + y'
| (Some(x'), None) => x'
| (None, Some(y')) => y'
| (None, None) => 0
};

10.9 Optional parameters 53

In this case, all we want is for x and y to be zero if they are omitted. ReasonML has
special syntax for this:

let add = (~x=0, ~y=0, ()) => x + y;

10.9.4 Type annotations with parameter default values
If there are default values, type annotations are more intuitive (no option()):

let add = (~x: int=0, ~y: int=0, ()) =>
x + y;

The type signature of add is:

(~x: int=?, ~y: int=?, unit) => int

10.9.5 Passing option values to optional parameters (advanced)
Internally, optional parameters are received as elements of the option type (None or
Some(x)). Until now, you could only pass those values by either providing or omitting
parameters. But there is also a way to pass those values directly. Before we get to use
cases for this feature, let’s try it out first, via the following function.

let multiply = (~x=1, ~y=1, ()) => x * y;

multiply has two optional parameters. Let’s start by providing ~x and omitting ~y, via
elements of option:

multiply(~x = ?Some(14), ~y = ?None, ());
- : int = 14

The syntax for passing option values is:

~label = ?expression

If expression is a variable whose name is label, you can abbreviate: the following two
syntaxes are equivalent.

~foo = ?foo
~foo?

So what is the use case? It’s one function forwarding an optional parameter to another
function’s optional parameter. That way, it can rely on that function’s parameter default
value and doesn’t have to define one itself.

Let’s look at an example: The following function square has an optional parameter,
which is passes on to multiply’s two optional parameters:

let square = (~x=?, ()) => multiply(~x?, ~y=?x, ());

square does not have to specify a parameter default value, it can use multiply’s defaults.

54 10 Functions

10.10 Partial application
Partial application is a mechanism that makes functions more versatile: If you omit one or
more parameters at the end of a function call f(···), f returns a function that maps the
missing parameters to f’s final result. That is, you apply f to its parameters in multiple
steps. The first step is called a partial application or a partial call.
Let’s see how that works. We first create a function add with two parameters:

let add = (x, y) => x + y;
let add: (int, int) => int = <fun>;

Then we partially call the binary function add to create the unary function plus5:
let plus5 = add(5);
let plus5: (int) => int = <fun>;

We have only provided add’s first parameter, x. Whenever we call plus5, we provide
add’s second parameter, y:

plus5(2);
- : int = 7

10.10.1 Why is partial application useful?
Partial application lets you write more compact code. To demonstrate how, we’ll work
with a list of numbers:

let numbers = [11, 2, 8];
let numbers: list(int) = [11, 2, 8];

Next, we’ll use the standard library function List.map. List.map(func, myList) takes
myList, applies func to each of its elements and returns them as a new list.
We use List.map to add 2 to each element of numbers:

let plus2 = x => add(2, x);
let plus2: (int) => int = <fun>;
List.map(plus2, numbers);
- : list(int) = [13, 4, 10]

With partial application we can make this code more compact:
List.map(add(2), numbers);
- : list(int) = [13, 4, 10]

Let’s compare the two versions more directly:
List.map(x => add(2, x), numbers)
List.map(add(2), numbers)

Which version is better? That depends on your taste. The first version is – arguably –
more self-descriptive, the second version is more concise.
Partial application really shines with the pipe operator (|>) for function composition
(which is explained later).

10.10 Partial application 55

10.10.2 Partial application and labeled parameters
So far, we have only see partial application with positional parameters, but it works with
labeled parameters, too. Consider, again, the labeled version of add:

let add = (~x, ~y) => x + y;
let add: (~x: int, ~y: int) => int = <fun>;

Ifwe call addwith only the first labeled parameter, we get a function thatmaps the second
parameter to the result:

add(~x=4);
- : (~y: int) => int = <fun>

Providing only the second labeled parameter works analogously.
add(~y=4);
- : (~x: int) => int = <fun>

That is, labels don’t impose an order here. That means that partial application is more
versatile with labels, because you can partially apply any labeled parameter, not just the
last one.

10.10.2.1 Partially application and optional parameters
How about optional parameters? The following version of add has only optional param-
eters:

let add = (~x=0, ~y=0, ()) => x + y;
let add: (~x: int=?, ~y: int=?, unit) => int = <fun>;

If you mention only the label ~x or only the label ~y, partial application works as before,
with one difference: The additional positional parameter of type unit must also still be
filled in.

add(~x=3);
- : (~y: int=?, unit) => int = <fun>
add(~y=3);
- : (~x: int=?, unit) => int = <fun>

However, as soon as you mention the positional parameter, there is no more partial ap-
plication; the defaults are now filled in:

add(~x=3, ());
- : int = 3
add(~y=3, ());
- : int = 3

Even if you take one or two intermediate steps, the () is always the final signal to evalu-
ate. One intermediate step looks as follows.

let plus5 = add(~x=5);
let plus5: (~y: int=?, unit) => int = <fun>;
plus5(());
- : int = 5

56 10 Functions

Two intermediate steps:

let plus5 = add(~x=5);
let plus5: (~y: int=?, unit) => int = <fun>;
let result8 = plus5(~y=3);
let result8: (unit) => int = <fun>;
result8(());
- : int = 8

10.10.3 Currying (advanced)
Currying is one technique for implementing partial application for positional parameters.
Currying a function means transforming it from a function with an arity of 1 or more to
a series of unary function calls.

For example, take the binary function add:

let add = (x, y) => x + y;

To curry addmeans to convert it to the following function:

let add = x => y => x + y;

Now we have to invoke add as follows:

add(3)(1);
- : int = 4

What have we gained? Partial application is easy now:

let plus4 = add(4);
let plus4: (int) => int = <fun>;
plus4(7);
- : int = 11

And now the surprise: all functions in ReasonML are automatically curried. That’s how
it supports partial application. You can see that if you look at the type of the curried add:

let add = x => y => x + y;
let add: (int, int) => int = <fun>;

On other words: add(x, y) is the same as add(x)(y) and the following two types are
equivalent:

(int, int) => int
int => int => int

Let’s conclude with a function that curries binary functions. Given that currying func-
tions that are already curried is meaningless, we’ll curry a function whose single param-
eter is a pair.

let curry2 = (f: (('a, 'b)) => 'c) => x => y => f((x, y));

Let’s use curry2 with a unary version of add:

10.11 The reverse-application operator (|>) 57

let add = ((x, y)) => x + y;
let add: ((int, int)) => int = <fun>;
curry2(add);
- : (int, int) => int = <fun>

The type at the end tells us that we have created a binary function.

10.11 The reverse-application operator (|>)
The operator |> is called reverse-application operator or pipe operator. It lets you chain func-
tion calls: x |> f is the same as f(x). That may not look like much, but it is quite useful
when combining function calls.

10.11.1 Example: piping ints and strings
Let’s start with a simple example. Given the following two functions.

let times2 = (x: int) => x * 2;
let twice = (s: string) => s ++ s;

If we use them with traditional function calls, we get:
twice(string_of_int(times2(4)));
- : string = "88"

First we apply times2 to 4, then string_of_int (a function in the standard library) to
the result, etc. The pipe operator lets us write code that is closer to the description that I
have just given:

let result = 4 |> times2 |> string_of_int |> twice;

10.11.2 Example: piping lists
With more complex data and currying, we get a style that is reminiscent of chained
method calls in object-oriented programming.
For example, the following code works with a list of ints:

[4, 2, 1, 3, 5]
|> List.map(x => x + 1)
|> List.filter(x => x < 5)
|> List.sort(compare);

These functions are explained in the chapter on lists. For now, it is enough to have a
rough idea of how they work.
The three computational steps are:

let l0 = [4, 2, 1, 3, 5];
let l0: list(int) = [4, 2, 1, 3, 5];
let l1 = List.map(x => x + 1, l0);
let l1: list(int) = [5, 3, 2, 4, 6];
let l2 = List.filter(x => x < 5, l1);

58 10 Functions

let l2: list(int) = [3, 2, 4];
let l3 = List.sort(compare, l2);
let l3: list(int) = [2, 3, 4];

We see that in all of these functions, the primary parameter comes last. When we piped,
we first filled in the secondary parameters via partial application, creating a function.
Then the pipe operator filled in the primary parameter, by calling that function.
The primary parameter is similar to this or self in object-oriented programming lan-
guages.

10.12 Tips for designing function signatures
These are a few tips for designing the type signatures of functions:

• If a function has a single primary parameter, make it a positional parameter and
put it at the end. That supports the pipe operator for function composition.

• Some functions have multiple primary parameters that are all similar. Turn these
into multiple positional parameters at the end. An example would be a function
that concatenates two lists into a single list. In that case, both positional parameters
are lists.

• All other parameters should be labeled.
• If there are two or more primary parameters that are different, all of them should
be labeled.

• If a function has only a single parameter, it tends to be unlabeled, even if it is not
strictly primary.

The idea behind these rules is to make code as self-descriptive as possible: The primary
(or only) parameter is described by the name of the function, the remaining parameters
are described by their labels.
As soon as a function hasmore than one positional parameter, it usually becomes difficult
to tell what each parameter does. Compare, for example, the following two function calls.
The second one is much easier to understand.

blit(bytes, 0, bytes, 10, 10);
blit(~src=bytes, ~src_pos=0, ~dst=bytes, ~dst_pos=10, ~len=10);

I also like optional parameters, because they enable you to add more parameters to func-
tions without breaking existing callers. That helps with evolving APIs.
Source of this section: Sect. “Suggestions for labeling” in the OCaml Manual.

10.13 Single-argument match functions
ReasonML provides an abbreviation for unary functions that immediately switch on
their parameters. Take, for example the following function.

let divTuple = (tuple) =>
switch tuple {
| (_, 0) => (-1)

https://caml.inria.fr/pub/docs/manual-ocaml/lablexamples.html#sec45

10.14 (Advanced) 59

| (x, y) => x / y
};

This function is used as follows:
divTuple((9, 3));
- : int = 3
divTuple((9, 0));
- : int = -1

If you use the fun operator to define divTuple, the code becomes shorter:
let divTuple =

fun
| (_, 0) => (-1)
| (x, y) => x / y;

10.14 (Advanced)
All remaining sections are advanced.

10.15 Operators
One neat feature of ReasonML is that operators are just functions. You can use them like
functions if you put them in parentheses:

(+)(7, 1);
- : int = 8

And you can define your own operators:
let (+++) = (s, t) => s ++ " " ++ t;
let (+++): (string, string) => string = <fun>;
"hello" +++ "world";
- : string = "hello world"

By putting an operator in parentheses, you can also easily look up its type:
(++);
- : (string, string) => string = <fun>

10.15.1 Rules for operators
There are two kinds of operators: infix operators (between two operands) and prefix
operators (before single operands).
The following operator characters can be used for both kinds of operators:

! $ % & * + - . / : < = > ? @ ^ | ~

Infix operators:

60 10 Functions

First character Followed by operator characters
= < > @ ^ ❘ & + - * / $ % 0+
1+

Additionally, the following keywords are infix operators:
* + - -. == != < > || && mod land lor lxor lsl lsr asr

Prefix operators:

First character Followed by operator characters
! 0+
? ~ 1+

Additionally, the following keywords are prefix operators:
- -.

Source of this section: Sect. “Prefix and infix symbols” in the OCaml Manual.

10.15.2 Precedences and associativities of operators
The following tables lists operators and their associativities. The higher up an operator,
the higher its precedence is (the stronger it binds). For example, * has a higher prece-
dence than +.

Construction or operator Associativity
prefix operator –
. .(.[.{ –
[] (array index) –
#··· –
applications, assert, lazy left
- -. (prefix) –
**··· lsl lsr asr right
*··· /··· %··· mod land lor lxor left
+··· -··· left
@··· ^··· right
=··· <··· >··· ❘··· &··· $··· != left
&& right
❘❘ right
if –
let switch fun try –

Legend:

• op···means op followed by other operator characters.

https://caml.inria.fr/pub/docs/manual-ocaml/lex.html#infix-symbol

10.16 Polymorphic functions 61

• Applications: function application, constructor application, tag application

Source of this table: Sect. “Expressions” in the OCaml manual

10.15.3 When does associativity matter?
Associativity matters whenever an operator is not commutative. With a commutative op-
erator, the order of the operands does not matter. For example, plus (+) is commutative.
However, minus (-) is not commutative.

Left associativity means that operations are grouped from the left. Then the following
two expressions are equivalent:

x op y op z
(x op y) op z

Minus (-) is left-associative:

3 - 2 - 1;
- : int = 0

Right associativitymeans that operations are grouped from the right. Then the following
two expressions are equivalent:

x op y op z
x op (y op z)

We can define our own right-associativeminus operator. According to the operator table,
if it starts with an @ symbol, it is automatically right-associative:

let (@-) = (x, y) => x - y;

If we use it, we get a different result than normal minus:

3 @- 2 @- 1;
- : int = 2

10.16 Polymorphic functions
Recall the definition of polymorphism: making the same operation work for several types.
There are multiple ways in which polymorphism can be achieved. OOP languages
achieve it via subclassing. Overloading is another popular kind of polymorphism.

ReasonML supports parametric polymorphism: so-called type variables indicate that any
type can be filled in. (Such variables are universally quantified.) A function that uses
type variables is called a generic function.

10.16.1 Example: id()
For example, id is the identity function that simply returns its parameter:

let id = x => x;
let id: ('a) => 'a = <fun>;

https://caml.inria.fr/pub/docs/manual-ocaml/expr.html

62 10 Functions

The type for id that ReasonML infers is interesting: It can’t detect a type for x, so it uses
the type variable 'a to indicate “any type”. Type variables always start with a straight
apostrophe. ReasonML also infers that the return type of id is the same as the type of its
parameter. That is useful information.

id is generic and works with any type:

id(123);
- : int = 123
id("abc");
- : string = "abc"

10.16.2 Example: first()
Let’s look another example: a generic function first for accessing the first component
of a pair (a 2-tuple).

let first = ((x, y)) => x;
let first: (('a, 'b)) => 'a = <fun>;

first uses destructuring to access the first component of that tuple. Type inference tells
us that the return type is the same as the type of the first component.

We can use an underscore to indicate that we are not interested in the second component:

let first = ((x, _)) => x;
let first: (('a, 'b)) => 'a = <fun>;

With a type-annotated component, first looks as follows:

let first = ((x: 'a, _)) => x;
let first: (('a, 'b)) => 'a = <fun>;

10.16.3 Example: ListLabels.map()
As a quick preview, I’m showing the signature of another function that I explain properly
in the chapter on lists.

ListLabels.map: (~f: ('a) => 'b, list('a)) => list('b)

10.16.4 Overloading vs. parametric polymorphism
Note how overloading and parametric polymorphism are different:

• Overloading provides different implementations for the same operation. For ex-
ample, some programming languages let you use + for arithmetic, string concate-
nation and/or array concatenation.

• Parametric polymorphism specifies a single algorithm that works with several
types.

10.17 ReasonML does not support variadic functions 63

10.17 ReasonML does not support variadic functions
ReasonML does not support variadic functions (varargs). That is, you can’t define a
function that computes the sum of an arbitrary number of parameters:

let sum = (x0, ···, xn) => x0 + ··· + xn;

Instead, you are forced to define one function for each arity:
let sum2(a: int, b: int) = a + b;
let sum3(a: int, b: int, c: int) = a + b + c;
let sum4(a: int, b: int, c: int, d: int) = a + b + c + d;

You have seen a similar technique with currying, where we couldn’t define a variadic
function curry() and had to go with a binary curry2(), instead. You’ll occasionally see
it in libraries, too.
An alternative to this technique is to use lists of ints.

64 10 Functions

Chapter 11

Basic modules

In this chapter, we explore how modules work in ReasonML.

11.1 Installing the demo repository
The demo repository for this chapter is available on GitHub: reasonml-demo-modules.
To install it, download it and:

cd reasonml-demo-modules/
npm install

That’s all you need to do – no global installs necessary.

11.2 Your first ReasonML program
This is where your first ReasonML program is located:

reasonml-demo-modules/
src/

HelloWorld.re

In ReasonML, each file whose name has the extension is .re is a module. The names of
modules start with capital letters and are camel-cased. File names define the names of
their modules, so they follow the same rules.
Programs are just modules that you run from a command line.
HelloWorld.re looks as follows:

/* HelloWorld.re */

let () = {
print_string("Hello world!");
print_newline()

};

65

https://github.com/rauschma/reasonml-demo-modules

66 11 Basic modules

This code may look a bit weird, so let me explain: We are executing the two lines inside
the curly braces and assigning their result to the pattern (). That is, no new variables
are created, but the pattern ensures that the result is (). The type of (), unit, is similar
to void in C-style languages.

Note that we are not defining a function, we are immediately executing print_string()
and print_newline().

To compile this code, you have two options (look at package.json for more scripts to
run):

• Compile everything, once: npm run build
• Watch all files and incrementally compile only files that change: npm run watch

Therefore, our next step is (run in a separate terminal window or execute the last step in
the background):

cd reasonml-demo-modules/
npm run watch

Sitting next to HelloWorld.re, there is now a file HelloWorld.bs.js. You can run this
file as follows.

cd reasonml-demo-modules/
node src/HelloWorld.bs.js

11.2.1 Other versions of HelloWorld.re
As an alternative to our approach (which is a common OCaml convention), we could
have also simply put the two lines into the global scope:

/* HelloWorld.re */

print_string("Hello world!");
print_newline();

And we could have defined a function main() that we then call:

/* HelloWorld.re */

let main = () => {
print_string("Hello world!");
print_newline()

};
main();

11.3 Two simple modules
Let’s continue with a module MathTools.re that is used by another module, Main.re:

reasonml-demo-modules/
src/

11.3 Two simple modules 67

Main.re
MathTools.re

Module MathTools looks like this:
/* MathTools.re */

let times = (x, y) => x * y;
let square = (x) => times(x, x);

Module Main looks like this:
/* Main.re */

let () = {
print_string("Result: ");
print_int(MathTools.square(3));
print_newline()

};

As you can see, in ReasonML, you can use modules by simply mentioning their names.
They are found anywhere within the current project.

11.3.1 Submodules
You can also nest modules. So this works, too:

/* Main.re */

module MathTools = {
let times = (x, y) => x * y;
let square = (x) => times(x, x);

};

let () = {
print_string("Result: ");
print_int(MathTools.square(3));
print_newline()

};

Externally, you can access MathTools via Main.MathTools.
Let’s nest further:

/* Main.re */

module Math = {
module Tools = {
let times = (x, y) => x * y;
let square = (x) => times(x, x);

};
};

68 11 Basic modules

let () = {
print_string("Result: ");
print_int(Math.Tools.square(3));
print_newline()

};

11.4 Controlling how values are exported from modules
By default, every module, type and value of a module is exported. If you want to hide
some of these exports, you must use interfaces. Additionally, interfaces support abstract
types (whose internals are hidden).

11.4.1 Interface files
You can control how much you export via so-called interfaces. For a module defined by
a file Foo.re, you put the interface in a file Foo.rei. For example:

/* MathTools.rei */

let times: (int, int) => int;
let square: (int) => int;

If, e.g., you omit times from the interface file, it won’t be exported.
The interface of a module is also called its signature.
If an interface file exists, then docblock comments must be put there. Otherwise, you put
them into the .re file.
Thankfully, we don’t have to write interfaces by hand, we can generate them from mod-
ules. How is described in the BuckleScript documentation. For MathTools.rei, I did it
via:

bsc -bs-re-out lib/bs/src/MathTools-ReasonmlDemoModules.cmi

11.4.2 Defining interfaces for submodules
Let’s assume, MathTools doesn’t reside in its own file, but exists as a submodule:

module MathTools = {
let times = (x, y) => x * y;
let square = (x) => times(x, x);

};

How do we define an interface for this module? We have two options.
First, we can define and name an interface via module type:

module type MathToolsInterface = {
let times: (int, int) => int;
let square: (int) => int;

};

https://bucklescript.github.io/docs/en/automatic-interface-generation.html

11.4 Controlling how values are exported from modules 69

That interface becomes the type of module MathTools:
module MathTools: MathToolsInterface = {

···
};

Second, we can also inline the interface:
module MathTools: {

let times: (int, int) => int;
let square: (int) => int;

} = {
···

};

11.4.3 Abstract types: hiding internals
You can use interfaces to hide the details of types. Let’s start with a module Log.re that
lets you put strings “into” logs. It implements logs via strings and completely exposes
this implementation detail by using strings directly:

/* Log.re */

let make = () => "";
let logStr = (str: string, log: string) => log ++ str ++ "\n";

let print = (log: string) => print_string(log);

From this code, it isn’t clear that make() and logStr() actually return logs.
This is how you use Log. Note how convenient the pipe operator (|>) is in this case:

/* LogMain.re */

let () = Log.make()
|> Log.logStr("Hello")
|> Log.logStr("everyone")
|> Log.print;

/* Output:
Hello
everyone
*/

The first step in improving Log is by introducing a type for logs. The convention, bor-
rowed from OCaml, is to use the name t for the main type supported by a module. For
example: Bytes.t

/* Log.re */

type t = string; /* A */

let make = (): t => "";

70 11 Basic modules

let logStr = (str: string, log: t): t => log ++ str ++ "\n";

let print = (log: t) => print_string(log);

In line A we have defined t to be simply an alias for strings. Aliases are convenient in
that you can start simple and add more features later. However, the alias forces us to
annotate the results of make() and logStr() (which would otherwise have the return
type string).
The full interface file looks as follows.

/* Log.rei */

type t = string; /* A */
let make: (unit) => t;
let logStr: (string, t) => t;
let print: (t) => unit;

We can replace line A with the following code and t becomes abstract – its details are hid-
den. That means that we can easily change our minds in the future and, e.g., implement
it via an array.

type t;

Conveniently, we don’t have to change LogMain.re, it still works with the new module.

11.5 Importing values from modules
There are several ways in which you can import values from modules.

11.5.1 Importing via qualified names
We have already seen that you can automatically import a value exported by a module
if you qualify the value’s name with the module’s name. For example, in the following
code we import make, logStr and print from module Log:

let () = Log.make()
|> Log.logStr("Hello")
|> Log.logStr("everyone")
|> Log.print;

11.5.2 Opening modules globally
You can omit the qualifier “Log.” if you open Log “globally” (within the scope of the
current module):

open Log;

let () = make()
|> logStr("Hello")
|> logStr("everyone")
|> print;

11.5 Importing values from modules 71

To avoid name clashes, this operation is not used very often. Mostmodules, such as List,
are used via qualifications: List.length(), List.map(), etc.
Global opening can also be used to opt into different implementations for standard mod-
ules. For example, module Foo might have a submodule List. Then open Foo; will
override the standard Listmodule.

11.5.3 Opening modules locally
We can minimize the risk of name clashes, while still getting the convenience of an open
module, by opening Log locally. We do that by prefixing a parenthesized expressionwith
Log. (i.e., we are qualifying that expression). For example:

let () = Log.(
make()

|> logStr("Hello")
|> logStr("everyone")
|> print

);

11.5.3.1 Redefining operators
Conveniently, operators are also just functions in ReasonML. That enables us to tem-
porarily override built-in operators. For example, we may not like having to use opera-
tors with dots for floating point math:

let dist = (x, y) =>
sqrt((x *. x) +. (y *. y));

Then we can override the nicer int operators via a module FloatOps:
module FloatOps = {

let (+) = (+.);
let (*) = (*.);

};
let dist = (x, y) =>

FloatOps.(
sqrt((x * x) + (y * y))

);

Whether or not you actually should do this in production code is debatable.

11.5.4 Including modules
Another way of importing a module is to include it. Then all of its exports are added
to the exports of the current module. This is similar to inheritance between classes in
object-oriented programming.
In the following example, module LogWithDate is an extension of module Log. It has the
new function logStrWithDate(), in addition to all functions of Log.

/* LogWithDateMain.re */

72 11 Basic modules

module LogWithDate = {
include Log;
let logStrWithDate = (str: string, log: t) => {

let dateStr = Js.Date.toISOString(Js.Date.make());
logStr("[" ++ dateStr ++ "] " ++ str, log);

};
};
let () = LogWithDate.(

make()
|> logStrWithDate("Hello")
|> logStrWithDate("everyone")
|> print

);

Js.Date comes from BuckleScript’s standard library and is not explained here.
You can include as many modules as you want, not just one.

11.5.5 Including interfaces
Interfaces are included as follows (InterfaceB extends InterfaceA):

module type InterfaceA = {
···

};
module type InterfaceB = {

include InterfaceA;
···

}

Similarly to modules, you can include more than one interface.
Let’s create an interface for module LogWithDate. Alas, we can’t include the interface of
module Log by name, because it doesn’t have one. We can, however, refer to it indirectly,
via its module (line A):

module type LogWithDateInterface = {
include (module type of Log); /* A */
let logStrWithDate: (t, t) => t;

};
module LogWithDate: LogWithDateInterface = {

include Log;
···

};

11.5.6 Renaming imports
You can’t really rename imports, but you can alias them.
This is how you alias modules:

module L = List;

https://bucklescript.github.io/bucklescript/api/Js.Date.html

11.6 Namespacing modules 73

This is how you alias values inside modules:
let m = List.map;

11.6 Namespacing modules
In large projects, ReasonML’sway of identifyingmodules can become problematic. Since
it has a single global module namespace, there can easily be name clashes. Say, two
modules called Util in different directories.
One technique is to use namespace modules. Take, for example, the following project:

proj/
foo/

NamespaceA.re
NamespaceA_Misc.re
NamespaceA_Util.re

bar/
baz/

NamespaceB.re
NamespaceB_Extra.re
NamespaceB_Tools.re
NamespaceB_Util.re

There are two modules Util in this project whose names are only distinct because they
were prefixed with NamespaceA_ and NamespaceB_, respectively:

proj/foo/NamespaceA_Util.re
proj/bar/baz/NamespaceB_Util.re

To make naming less unwieldy, there is one namespace module per namespace. The first
one looks like this:

/* NamespaceA.re */
module Misc = NamespaceA_Misc;
module Util = NamespaceA_Util;

NamespaceA is used as follows:
/* Program.re */

open NamespaceA;

let x = Util.func();

The global open lets us use Util without a prefix.
There are two more use cases for this technique:

• You can override modules with it, even modules from the standard library. For ex-
ample, NamespaceA.re could contain a custom List implementation, whichwould
override the built-in Listmodule inside Program.re:

module List = NamespaceA_List;

74 11 Basic modules

• You can create nested modules while keeping submodules in separate files. For
example, in addition to opening NamespaceA, you can also access Util via Names-
paceA.Util, because it is nested inside NamespaceA. Of course, NamespaceA_Util
works, too, but is discouraged, because it is an implementation detail.

The latter technique is used by BuckleScript for Js.Date, Js.Promise, etc., in file js.ml
(which is in OCaml syntax):

···
module Date = Js_date
···
module Promise = Js_promise
···
module Console = Js_console

11.6.1 Namespace modules in OCaml
Namespace modules are used extensively in OCaml at Jane Street. They call them packed
modules, but I prefer the name namespace modules, because it doesn’t clash with the npm
term package.

Source of this section: “Better namespaces throughmodule aliases” by YaronMinsky for
Jane Street Tech Blog.

11.7 Exploring the standard library
There are two big caveats attached to ReasonML’s standard library:

• It is currently work in progress.
• Its naming style for values inside modules will change from snake case (foo_bar
and Foo_bar) to camel case (fooBar and FooBar).

• At the moment, much functionality is still missing.

11.7.1 API docs
ReasonML’s standard library is split: most of the core ReasonML API works on both
native and JavaScript (via BuckleScript). If you compile to JavaScript, you need to use
BuckleScript’s API in two cases:

• Functionality that is completely missing from ReasonML’s API. Examples include
support for dates, which you get via BuckleScript’s Js.Date.

• ReasonML API functionality that is not supported by BuckleScript. Examples in-
clude modules Str (due to JavaScript’s strings being different from ReasonML’s
native ones) and Unix (with native APIs).

This is the documentation for the two APIs:

• ReasonML API docs
• BuckleScript API docs

https://github.com/BuckleScript/bucklescript/blob/master/jscomp/runtime/js.ml
https://blog.janestreet.com/better-namespaces-through-module-aliases/
https://bucklescript.github.io/bucklescript/api/Js.Date.html
https://reasonml.github.io/api/
https://bucklescript.github.io/bucklescript/api/

11.8 Installing libraries 75

11.7.2 Module Pervasives
Module Pervasives contains the core standard library and is always automatically
opened for each module. It contains functionality such as the operators ==, +, |> and
functions such as print_string() and string_of_int().

If something in this module is ever overridden, you can still access it explicitly via, e.g.,
Pervasives.(+).

If there is a file Pervasives.re in your project, it overrides the built-in module and is
opened instead.

11.7.3 Standard functions with labeled parameters
The following modules exist in two versions: an older one, where functions have only
positional parameters and a newer one, where functions also have labeled parameters.

• Array, ArrayLabels
• Bytes, BytesLabels
• List, ListLabels
• String, StringLabels

As an example, consider:

List.map: ('a => 'b, list('a)) => list('b)
ListLabels.map: (~f: 'a => 'b, list('a)) => list('b)

Two more modules provide labeled functions:

• Module StdLabels has the submodules Array, Bytes, List, String, which are
aliases to ArrayLabels etc. In your modules, you can open StdLabels to get a
labeled version of List by default.

• Module MoreLabels has three submodules with labeled functions: Hashtbl, Map
and Set.

11.8 Installing libraries
For now, JavaScript is the preferred platform for ReasonML. Therefore, the preferredway
of installing libraries is via npm. This works as follows. As an example, assumewewant
to install the BuckleScript bindings for Jest (which include Jest itself). The relevant npm
package is called bs-jest.

First, we need to install the package. Inside package.json, you have:

{
"dependencies": {

"bs-jest": "^0.1.5"
},
···

}

Second, we need to add the package to bsconfig.json:

https://reasonml.github.io/api/Pervasives.html
https://reasonml.github.io/api/StdLabels.html
https://reasonml.github.io/api/MoreLabels.html

76 11 Basic modules

{
"bs-dependencies": [

"bs-jest"
],
···

}

Afterwards, we can use module Jest with Jest.describe() etc.
More information on installing libraries:

• BuckleScript’s build system is explained in Chap. “Build system support” of the
BuckleScript Manual.

• ReasonML’s docs explain how to find ReasonML libraries on npm.
– Useful npm keywords include: reason, reasonml, bucklescript

https://bucklescript.github.io/bucklescript/Manual.html#_build_system_support
https://reasonml.github.io/docs/en/libraries.html

Chapter 12

Variant types

Variant types (short: variants) are a data type supported bymany functional programming
languages. They are an important ingredient in ReasonML that is not available in C-style
languages (C, C++, Java, C#, etc.). This chapter explains how they work.

12.1 Variants as sets of symbols (enums)
Variants let you define sets of symbols. When used like this, they are similar to enums in
C-style languages. For example, the following type color defines symbols for six colors.

type color = Red | Orange | Yellow | Green | Blue | Purple;

There are two elements in this type definition:

• The name of the type, color, which must start with a lowercase letter.
• The names of constructors (Red, Orange, …), whichmust startwith uppercase letters.
Why constructors are called constructors will become clear, once we use variants
as data structures.

The names of constructors must be unique within the current scope. That enables Rea-
sonML to easily deduce their types:

Purple;
- : color = Purple

Variants can be processed via switch and pattern matching:

let invert = (c: color) =>
switch c {
| Red => Green
| Orange => Blue
| Yellow => Purple
| Green => Red
| Blue => Orange

77

78 12 Variant types

| Purple => Yellow
};

Here, constructors are used both as patterns (left-hand sides of =>) and values (right-hand
sides of =>). This is invert() in action:

invert(Red);
- : color = Green
invert(Yellow);
- : color = Purple

12.1.1 Tip: replacing booleans with variants
In ReasonML, variants are often a better choice than booleans. Take for example, this
function definition. (Remember that in ReasonML, the main parameter goes at the end,
to enable currying.)

let stringOfContact = (includeDetails: bool, c: contact) => ···;

This is how stringOfContact is invoked:

let str = stringOfContact(true, myContact);

It’s not clear what the boolean at the end does. You can improve this function via a
labeled parameter.

let stringOfContact = (~includeDetails: bool, c: contact) => ···;
let str = stringOfContact(~includeDetails=true, myContact);

Even more self-descriptive is to introduce a variant for the value of ~includeDetails:

type includeDetails = ShowEverything | HideDetails;
let stringOfContact = (~levelOfDetail: includeDetails, c: contact) => ···;
let str = stringOfContact(~levelOfDetail=ShowEverything, myContact);

Using the variant includeDetails has two advantages:

• It is immediately clear what “not showing details” means.
• It is easy to add more modes later on.

12.1.2 Associating variant values with data
Sometimes, you want to use variant values as keys for looking up data. One way of
doing so is via a function that maps variant values to data:

type color = Red | Orange | Yellow | Green | Blue | Purple;
let stringOfColor = (c: color) =>

switch c {
| Red => "Red"
| Orange => "Orange"
| Yellow => "Yellow"
| Green => "Green"
| Blue => "Blue"

12.2 Variants as data structures 79

| Purple => "Purple"
};

12.2 Variants as data structures
Each constructor can also hold one or more values. These values are identified by posi-
tion. That is, individual constructors are similar to tuples. The following code demon-
strates this feature.

type point = Point(float, float);
type shape =

| Rectangle(point, point)
| Circle(point, float);

Type point is a variant with a single constructor. It holds two floating point numbers. A
shape is another variant. It is either:

• a Rectangle defined by two corner points or
• a Circle defined by a center and a radius.

With multiple constructor parameters, them being positional and not labeled becomes a
problem – we have to describe elsewhere what their roles are. Records are an alternative
in this case (they are described in their own chapter).
This is how you use the constructors:

let bottomLeft = Point(-1.0, -2.0);
let bottomLeft: point = Point(-1., -2.);
let topRight = Point(7.0, 6.0);
let topRight: point = Point(7., 6.);
let circ = Circle(topRight, 5.0);
let circ: shape = Circle(Point(7., 6.), 5.);
let rect = Rectangle(bottomLeft, topRight);
let rect: shape = Rectangle(Point(-1., -2.), Point(7., 6.));

Due to each constructor name being unique, ReasonML can easily infer the types.
If constructors hold data, pattern matching via switch is even more convenient, because
it also lets you access that data:

let pi = 4.0 *. atan(1.0);

let computeArea = (s: shape) =>
switch s {
| Rectangle(Point(x1, y1), Point(x2, y2)) =>
let width = abs_float(x2 -. x1);
let height = abs_float(y2 -. y1);
width *. height;

| Circle(_, radius) => pi *. (radius ** 2.0)
};

Let’s use computeArea, continuing our previous interactive rtop session:

80 12 Variant types

computeArea(circ);
- : float = 78.5398163397448315
computeArea(rect);
- : float = 64.

12.3 Self-recursive data structures via variants
You can also define recursive data structures via variants. For example, binary trees
whose nodes contain integers:

type intTree =
| Empty
| Node(int, intTree, intTree);

intTree values are constructed like this:

let myIntTree = Node(1,
Node(2, Empty, Empty),
Node(3,

Node(4, Empty, Empty),
Empty

)
);

myIntTree looks as follows: 1 has the two child nodes 2 and 3. 2 has two empty child
nodes. Etc.

1
2

X
X

3
4

X
X

X

12.3.1 Processing self-recursive data structures via recursion
To demonstrate processing self-recursive data structures, let’s implement a function com-
puteSum, which computes the sum of the integers stored in the nodes.

let rec computeSum = (t: intTree) =>
switch t {
| Empty => 0
| Node(i, leftTree, rightTree) =>

i + computeSum(leftTree) + computeSum(rightTree)
};

computeSum(myIntTree); /* 10 */

12.4 Mutually recursive data structures via variants 81

This kind of recursion is typical when working with variant types:

1. A limited set of constructors is used to create data. In this case: Empty and Node().
2. The same constructors are used as patterns to process the data.

That ensures that we handlewhatever data is passed to us properly, as long as it is of type
intTree. ReasonML helps by warning us if switch doesn’t cover intTree exhaustively.
That protects us from forgetting cases that we should consider. To illustrate, let’s assume
we forgot Empty and wrote computeSum like this:

let rec computeSum = (t: intTree) =>
switch t {
/* Missing: Empty */
| Node(i, leftTree, rightTree) =>

i + computeSum(leftTree) + computeSum(rightTree)
};

Then we get the following warning.

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Empty

As mentioned in the chapter on functions, introducing catch-all cases means that you
lose this protection. That’s why you should avoid them if you can.

12.4 Mutually recursive data structures via variants
Recall that with let, we had to use let rec whenever recursion was involved:

• A single self-recursive definition was done via let rec.
• Multiple mutually recursive definitions were done via let rec and connected via

and.

type is implicitly rec. That allowed us to do self-recursive definitions such as intTree.
Formutually recursive definitions, we also need to connect those definitions via and. The
following example again defines int trees, but this time with a separate type for nodes.

type intTree =
| Empty
| IntTreeNode(intNode)

and intNode =
| IntNode(int, intTree, intTree);

intTree and intNode are mutually recursive, which is why they need to be defined
within the same type declaration, separated via and.

12.5 Parameterized variants
Let’s recall our original definition of int trees:

82 12 Variant types

type intTree =
| Empty
| Node(int, intTree, intTree);

How can we turn this definition into a generic definition for trees whose nodes can con-
tain any type of value? To do so, we have to introduce a variable for the type of a Node’s
content. Type variables are prefixed with apostrophes in ReasonML. For example: 'a.
Therefore, a generic tree looks as follows:

type tree('a) =
| Empty
| Node('a, tree('a), tree('a));

Two things are noteworthy. First, the content of a Node, which previously had the type
int, nowhas the type 'a. Second, the type variable 'ahas become a parameter of the type
tree. Node passes that parameter on to its subtrees. That is, we can choose a different
node value type for each tree, but within a tree, all node values must have the same type.

We can now define a type for int trees via a type alias, by providing tree’s type parame-
ter:

type intTree = tree(int);

Let’s use tree to create a tree of strings:

let myStrTree = Node("a",
Node("b", Empty, Empty),
Node("c",

Node("d", Empty, Empty),
Empty

)
);

Due to type inference, you do not need to provide a type parameter. ReasonML automat-
ically infers that myStrTree has the type tree(string). The following generic function
prints any kind of tree:

/**
* @param ~indent How much to indent the current (sub)tree.
* @param ~stringOfValue Converts node values to strings.
* @param t The tree to convert to a string.
*/
let rec stringOfTree = (~indent=0, ~stringOfValue: 'a => string, t: tree('a)) => {

let indentStr = String.make(indent*2, ' ');
switch t {
| Empty => indentStr ++ "X" ++ "\n"
| Node(x, leftTree, rightTree) =>

indentStr ++ stringOfValue(x) ++ "\n" ++
stringOfTree(~indent=indent+1, ~stringOfValue, leftTree) ++
stringOfTree(~indent=indent+1, ~stringOfValue, rightTree)

};
};

12.6 Useful standard variants 83

This function uses recursion to iterate over the nodes of its parameter t. Given that
stringOfTreeworks with arbitrary types 'a, we need a type-specific function to convert
values of type 'a to strings. That is what parameter ~stringOfValue is for.
This is how we can print our previously defined myStrTree:

print_string(stringOfTree(~stringOfValue=x=>x, myStrTree));
a

b
X
X

c
d

X
X

X

12.6 Useful standard variants
I will briefly show two commonly used standard variants.

12.6.1 Type option('a) for optional values
In many object-oriented languages, a variable having type string means that the vari-
able can be either null or a string value. Types that include null are called nullable. Nul-
lable types are problematic in that it’s easy to work with their values while forgetting
to handle null. If – unexpectedly – a null appears, you get the infamous null pointer
exceptions.
In ReasonML, types are never nullable. Instead, potentially missing values are handled
via the following parameterized variant:

type option('a) =
| None
| Some('a);

option forces you to always consider the None case.
ReasonML’s support for option is minimal. The definition of this variant is part of the
language, but the core standard library has no utility functions forworkingwith optional
values, yet. Until they are, you can use BuckleScript’s Js.Option.

12.6.2 Type result('a) for error handling
result is another standard variant for error-handling in OCaml:

type result('good, 'bad) =
| Ok('good)
| Error('bad);

Until ReasonML’s core library supports it, you can use BuckleScript’s Js.Result.

https://bucklescript.github.io/bucklescript/api/Js.Option.html
https://bucklescript.github.io/bucklescript/api/Js.Result.html

84 12 Variant types

12.6.3 Example: evaluating integer expressions
Working with trees is one of the strengths of ML-style languages. That’s why they are of-
ten used for programs involving syntax trees (interpreters, compilers, etc.). For example,
the syntax checker Flow by Facebook is written in OCaml.
Therefore, as a concluding example, let’s implement an evaluator for simple integer ex-
pressions.
The following is a data structure for integer expressions.

type expression =
| Plus(expression, expression)
| Minus(expression, expression)
| Times(expression, expression)
| DividedBy(expression, expression)
| Literal(int);

This is what an expression encoded with this variant looks like:
/* (3 - (16 / (6 + 2)) */
let expr =

Minus(
Literal(3),
DividedBy(

Literal(16),
Plus(

Literal(6),
Literal(2)

)
)

);

And finally, this is the function the evaluates integer expressions.
let rec eval(e: expression) =

switch e {
| Plus(e1, e2) => eval(e1) + eval(e2)
| Minus(e1, e2) => eval(e1) - eval(e2)
| Times(e1, e2) => eval(e1) * eval(e2)
| DividedBy(e1, e2) => eval(e1) / eval(e2)
| Literal(i) => i
};

eval(expr); /* 1 */

Chapter 13

Where are the remaining
chapters?

You are reading a preview of this book:
• The full version of this book is available for purchase.
• You can take a look at the full table of contents (also linked to from the book’s
homepage).

85

https://exploringjs.com/deep-js/#buy
https://exploringjs.com/deep-js/downloads/complete-toc.html

	I Background
	About this book
	Questions and answers about this book
	Warning: This book is outdated
	About the cover

	What is ReasonML?
	What is ReasonML?
	The benefits of OCaml
	Improving OCaml
	Conclusion

	Getting started with ReasonML
	Installation
	Quickly trying out ReasonML
	Template projects
	Important tip: converting OCaml to ReasonML

	What is planned for ReasonML?
	FAQ: ReasonML
	Where is module Str in BuckleScript?

	II Core language
	A first look at ReasonML's syntax
	Most things are expressions
	Semicolons matter
	Everything is camel-cased in ReasonML
	Special prefixes and suffixes for variable names

	Basic values and types
	Interactions in rtop
	ReasonML is statically typed – what does that mean?
	Comments
	Booleans
	Numbers
	Strings
	Characters
	The unit type
	Converting between basic types
	More operators

	let bindings and scopes
	Normal let bindings
	Redefining variables
	Type annotations
	Creating new scopes via scope blocks

	Pattern matching: destructuring, switch, if expressions
	Digression: tuples
	Pattern matching
	Pattern matching via let (destructuring)
	switch
	if expressions
	The ternary operator (_?_:_)

	Functions
	Defining functions
	Single parameters without parentheses
	Recursive bindings via let rec
	Terminology: arity
	The types of functions
	There are no functions without parameters
	Destructuring function parameters
	Labeled parameters
	Optional parameters
	Partial application
	The reverse-application operator (|>)
	Tips for designing function signatures
	Single-argument match functions
	(Advanced)
	Operators
	Polymorphic functions
	ReasonML does not support variadic functions

	Basic modules
	Installing the demo repository
	Your first ReasonML program
	Two simple modules
	Controlling how values are exported from modules
	Importing values from modules
	Namespacing modules
	Exploring the standard library
	Installing libraries

	Variant types
	Variants as sets of symbols (enums)
	Variants as data structures
	Self-recursive data structures via variants
	Mutually recursive data structures via variants
	Parameterized variants
	Useful standard variants

	Where are the remaining chapters?

